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Abstract

GPR120 and GPR40 were recently reported as omega-3 (ω3) receptors with anti-inflammatory properties. Physical exercise could increase the expression of
these receptors in the liver, improving hepatic metabolism in obesity and type 2 diabetes. Our aim was to investigate GPR120/40 in the liver of lean and obese
mice after acute or chronic physical exercise, with or without the supplementation of ω3 rich flaxseed oil (FS), as well as assess the impact of exercise and FS on
insulin signaling and inflammation. Mice were fed a high-fat diet (HF) for 4 weeks to induce obesity and subsequently subjected to exercise with or without FS,
or FS alone. Insulin signaling, inflammatory markers and GPR120/40 and related cascades were measured. Chronic, but not acute, exercise and FS increased
GPR120, but not GPR40, activating β-arrestin-2 and decreasing the inflammatory response, as well as reducing fat depots in liver and adipose tissue. Exercise or a
source of ω3 led to a higher tolerance to fatigue and an increased running distance and speed. The combination of physical exercise and ω3 food sources could
provide a new strategy against obesity through the modulation of hepatic GPR120 and an increase in exercise performance.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Obesity is at record levels [1], and therefore, any advancement in
understanding the relationship between physical activity and bal-
anced nutrition beyond simple energy expenditure or calorie
restriction could provide huge benefits in this area. Studies have
shown, for example, the ability of nutrients, such as omega-3 (ω3),
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and physical exercise to reduce inflammation and endoplasmic
reticulum stress in hypothalamus, partially restoring food intake
control [2,3] and modulating the peripheral inflammatory state [4],
which contributes to the improvement of insulin resistance and
glucose clearance.

Withω3 able to modulate inflammation and effect obesity-related
outcomes, it is of interested that two G-protein coupled receptors
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Fig. 1. Experimental protocol design; chronic exercise and metabolic characterization. (A) Four-week-old male Swiss mice were randomly assigned to a regular chow (CT) or high-fat
diet (HF) over 2months in total. Fourweeks after beginning theHF diet, micewere tested for insulin resistance and sensitivity and glucose tolerance and then randomly distributed into
four groups: HF (HF), HF plus exercise (HF + Exe), HF plus FS oil treatment (100 μl) (HF + FS) and HF plus exercise and FS oil treatment (100 μl) (HF + Exe + FS). After 5 days of
exercise adaptation and 2 days of rest, micewere submitted to an incremental exercise test to determine themaximumpotency of exercise and subsequently began exercise training for
4 weeks. On the last day of experimental period, the animals were killed and the liver was removed for analysis. After the 4 weeks, food intake (B), bodymass variation (C and D), body
weight evaluation (E), fasting glucose (F) and insulin sensitivity (G and H) were evaluated. CT (n=6), HF (n=7), HF + FS (n=8), HF + Exe (n=7) and HF + Exe + FS (n=8). Values
are expressed as means ± S.D. #Pb.05 vs. CT group by Student's t test. ⁎Pb.05 vs. HF (Tukey's test). CT, regular chow; HF, high-fat diet; FS, flaxseed oil; Exe, exercise.
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(GPCR), GPR120 and GPR40, were recently deorphanized and shown
to recognize ω3 acids (docosahexaenoic, C22:6; eicosapentaenoic,
C20:4; andα-linolenic, C18:3), as well as omega-9 (oleic acid, C18:1)
[5,6]. Following GPR120/40 activation, βarrestin2 binds to GPR120/
40 and internalizes the receptor and its agonist. Concomitantly,
βarrestin2 recruits the transforming growth factor beta-activated
kinase1/2 binding protein (TAB1/2) from proinflammatory path-
ways, including Toll-like receptor (TLR) 2/4 and tumor necrosis
factor alpha (TNF-α) pathways, disassembling their cascades
[4,5,7,8]. In addition, βarrestin2 has been shown to disrupt the
structure of the inflammasome by binding to the nucleotide-binding
oligomerization domain-like receptor containing pyrin domain 3
(NLRP3) protein, followingω3 fatty acid induced GPR120 activation,
reducing the inflammation [9].
The mechanisms by which exercise has been shown to be
beneficial in metabolic diseases include the decrease of TLR4 signaling
improving insulin sensitivity via interleukin (IL)-6 and peroxisome
proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α medi-
ated pathways [10–13]. Furthermore, exercise has been shown to
increase APPL1 (adaptor protein, phosphotyrosine interaction, pleck-
strin homology domain and leucine zipper containing 1), restoring
insulin receptor (IR) and Akt signaling [14], as well as increasing the
production of anti-inflammatory IL10. Exercise is also the accepted
treatment in nonalcoholic fatty liver disease (NAFLD) [15].

Given the potential of both exercise and ω3 in improving health
state in obesity and insulin resistance/type 2 diabetes mellitus, we
hypothesized that acute and chronic exercise could increase insulin
sensitivity and exercise performance, decrease inflammation and



Table 1
Diet based on AIN-93G (American Institute of Nutrition, 1993) [17].

HF diet components

Ingredients (g/kg−1) kcal/kg−1 % Fatty acids

Corn starch 115.5 g 462
Casein 200 g 800
Sucrose 100 g 400
Dextrinated starch 132 g 528
Soybean oil 40 g 360
Lard 312 g 2808
Cellulose 50 g -
Mineral mix 35 g -
Vitamin mix 10 g -
L-Cysteine 3 g -
Choline 2.5 g -
SFA - - 37.48
MUFA - - 42.56
PUFA - - 19.96
⁎ALA (C18:3) - - 1.29a

Total 1000 g 5358 Kcal 100%

HF, high-fat [7]; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA,
polyunsaturated fatty acids; ALA, alpha linolenic fatty acid.
⁎ ALA is a nutrient included in the PUFA.
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importantly increase the expression of GPR120 and GPR40 in the liver
and that these effects could be enhanced by ω3 supplementation (FS
oil). Herein, GPR120 but not GPR40 seems to be positively modulated
by exercise and FS, decreasing the hepatic inflammation induced by
increased fat consumption.

2. Methods

2.1. Experimental animals

After Ethical Committee acceptance (#3512-1), 4-week-old, male,
Swiss Albinusmice were housed in individual cages at 21°C±2°Cwith
a 12-h light/dark cycle. The Swiss mouse readily develops obesity and
associated comorbidities on an HF diet alone. At the end of
experiment, the animals were anesthetized and euthanized with
high levels of anesthesia (see section 2.7, method).

2.2. Experimental design and diet

The acute or chronic exercise protocols in Ferreira et al. (2007) [16]
were followed. An acute exercise program (Fig. S1A) was initially
carried out to test the best moment of GPR120 expression in the liver.
Animals (n=5/group) following the acute program and sedentary
controls were fed a standard rodent chow, and liver fragments were
removed at 0 h, 8 h, 16 h, 24 h or 48 h postexercise. The liver was
chosen based on this organ's crucial role in energetic metabolism.

In the primary study, we aimed to understand whether chronic
exercise could increase the GPR120 expression and protein content in
the liver from obese mice (Fig. 1A). Then, during 8 weeks, mice were
fed either the standard rodent chow (CT group), purchased from
Nuvilab, or a high-fat (HF) alternative (HF group), prepared in
accordance to American Institute of Nutrition Guidelines (AIN-93G)
[17]. In the HF diet, 31% of the corn starch was replaced by lard [7] as
described in Table 1. Those receiving the standard chow remained
sedentary (CT). Those on the HF diet were subdivided into four
groups: (1) sedentarymice (HF), (2) chronic exercise (HF + Exe), (3)
sedentary mice with flaxseed oil (HF + FS) and (4) chronic exercise
with FS oil (HF + Exe + FS). The chronic exercise program ran over a
4-week period, and all mice received either the FS (Supplemental
Table 1) or saline daily via gavage at a dose of 100 μl permouse. FSwas
chosen because of its high concentration ofω3 [52.3%α-linolenic acid
(C18:3)], which is naturally present in foods, and because of its low
cost and low levels of adulteration compared to fish oil. Saline was
considered the most appropriate control due to the potential of other
oils, such as corn or sunflower oil, to induce a proinflammatory status
due to their high linoleic fatty acid content [18]. At the end of
experimental period, liver fragments were removed at 24 h postex-
ercise (Fig. 1A).

To test the insulin signaling, mice from each group were aleatory
selected to receive an injection of insulin (100 μl 10−6 mol/L) or saline
(100 μl) through the portal vein. After 30 s, fragments of hepatic tissue
were removed and immediately homogenized in extraction buffers
(see section 2.7, method).

2.3. Physical exercise protocols (acute and chronic)

Both exercise protocols (acute and chronic) consisted of running
on amotor treadmill at a 60% intensity of the peakworkload. The acute
exercise protocol consisted of a single bout of running on a motor
treadmill for 60 min (Fig. S1). The chronic exercise program consisted
of 5 days aweek for 4weeks; however, the length of training started at
15 min per day and was gradually increased by 15 min over each
subsequent week (i.e., by week 4, mice were carrying out 60 min of
exercise per day) (Fig. 1A).
2.4. Reagents and antibodies

The reagents for SDS-polyacrylamide gel electrophoresis were
from Bio-Rad (Richmond, CA, USA). Human recombinant insulin
(HumulinR)was fromLilly (Indianapolis, IN, USA). Anti-Akt (sc-8312)
rabbit polyclonal; anti-phospho [Thr 183/185] c-Jun N terminal kinase
(sc-6254) mouse monoclonal; anti-IL10 (sc-1783) goat polyclonal;
anti-α-tubulin (sc-398,103)mousemonoclonal; anti-GPR120 (sc-48,203)
goat polyclonal; anti-GPR40 (sc-32,905) rabbit polyclonal; anti-βarrestin2
(sc-13,140)mousemonoclonal; anti-glyceraldehyde 3-phosphate dehy-
drogenase (sc-25,778) rabbit polyclonal and anti-inhibitor kinase kappa
(sc-34,673) rabbit polyclonalwere fromSantaCruzBiotechnology (Santa
Cruz, CA, USA). The adopted dilution was 1:1000 for each Santa Cruz
antibody. Anti-phospho-glycogen-synthase-kinase-3β [Ser9] (#5558)
rabbit polyclonal, anti-glycogen-synthase-kinase-3β (sc9166) rabbit
polyclonal, anti-phospho-TAK1 [Ser412] (#9339) rabbit polyclonal,
anti-phospho-Akt [Ser 473] (#4051) mouse monoclonal, anti-phospho-
NF-κB Inhibitor alpha (IKBα) [Ser32/36] (#9246)mousemonoclonal and
anti-phospho inhibitor kinase kappa (#2697) mouse monoclonal were
fromCell Signaling (Danvers,MA, USA). The adopteddilutionwas 1:2000
for each Cell Signaling antibody. Anti-IL1β (503502mouse-rat) and anti-
TNFα (506101, mouse-rat) were from BioLegend (San Diego, CA, USA).
The adopted dilution was 1:2000 for each BioLegend antibody.

2.5. Intraperitoneal insulin tolerance test

The insulin tolerance test (ITT) was carried out to guarantee the
insulin resistance induced by HF diet and to evaluate the effectiveness
of the treatments. Then, after 8 h of fasting, insulin (1.5 U/kg body
weight−1) was injected i.p., and blood samples were collected from
the tail vein at 0min and every subsequent 5min for 30min for serum
glucose determination. The constant for the rate of serum glucose
decaywas calculated using the formula 0.693/biological half-life (t1/2).
The plasma glucose t1/2 was calculated from the slope of last square
analysis of the plasma glucose concentration during the linear phase of
decline [19]. Glucose levels were determined using Accutrend Plus
equipment (Roche, Switzerland).

2.6. Intraperitoneal glucose tolerance test

With the sameproposal of ITT, the glucose tolerance test (GTT)was
carried out. After 8 h of fasting, a blood sample was collected from the
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tail vein (time 0) prior to the i.p. administration of a 25% glucose
solution (2.0 g/kg body weight). Further blood samples were then
collected every 30 min for 120 min to determine blood glucose
concentrations. Results are presented as the area under the glucose
curves.
Fig. 2. Themacroscopic appearance of liver and adipose tissue. (A) Liver and (C) adipose tissues (
eosin staining of 4-mm sections) of liver from CT, HF, HF + Exe, HF + FS or HF + FS + E
HF + Exe + FS (Tukey's test). CT, regular chow; HF, high-fat diet; FS, flaxseed oil; Exe, exerci
2.7. Immunobloting

After an i.p. injection of anesthesia [ketamine (50 mg/kg body
weight−1) and xylazine (20 mg/kg body weight−1)], corneal reflexes
were confirmed as absent, and the abdominal cavities were opened.
epididymal,mesenteric and retroperitoneal). (B)Histological evaluation (hematoxylin–
xe groups. #Pb.05 vs. CT (Student's test) and ⁎Pb.05 vs. HF, HF + FS, HF + Exe and
se training.



56 R.C. Gaspar et al. / Journal of Nutritional Biochemistry 66 (2019) 52–62
Fragments (~3mm3) of hepatic tissuewere removed and immediately
homogenized in extraction buffers with a Polytron homogenizer (PT
10-35GT-Kinemática) kept at 4°C during this period. Total proteinwas
quantified using the Bradford method [20]. The samples were then
applied to a polyacrylamide gel for separation by SDS-PAGE and
subsequently transferred to a nitrocellulose membrane. At this
moment, the membrane was stained with Ponceau to assure the
quality and originality of the results. The resulting blots were blocked
with 5% dry milk at room temperature for 1 h and then incubated
with specific antibodies (see section 2.4,method). Specific bandswere
labeled by chemiluminescence, and visualization was performed on a
fluorescence imaging system (G:BOX Chemi XRQ, Syngene, USA).
The bands presented in the blots were quantified using the software
UN-SCAN-IT.

2.8. Immunoprecipitation analysis

For immunoprecipitation analysis, 1.0 mg of total protein for liver
homogenates was immunoprecipitated with 10 μl of anti-Βarrestin2
using Protein A sepharose beads (GE Healthcare Life Sciences).
Precipitates were then analyzed by a Western blot with anti-GPR120
and reprobed with mouse anti-βarrestin2.

2.9. RNA extraction and real-time PCR

A separate liver fragment (~3mm3)was removed and immediately
homogenizedwith a Polytron homogenizer (PT 10-35GT-Kinemática)
using Trizol buffer (Life Technologies). The reverse transcription was
performed as previously described [21]. The primers for Gpr120 and
Gapdh were obtained from ThermoFisher Scientific. Real-time PCR
analysis of gene expression was performed using an ABI Prism 7700
sequence detection system (Applied Biosystems).

2.10. Liver histology

A separate liver fragment (~3mm3)was removed and immediately
maintained at formaldehyde 4% solution for 2 days. Afterward, the
fragment was dehydrated with ethanol, cleared with xylene, embed-
ded in paraffin wax (Histosec, Merck, Germany) and cut into 4-μm
sections (Olympus microtome) [21]. Sections were mounted and
stained with hematoxylin and eosin. The analysis and documentation
of the sections were performed using a Leica FW 4500 B microscope.

2.11. Lipidomics

To test theω3 incorporation by liver, mass spectrometry was used.
Liver samples were submitted to sorptive tape-like extraction laser
desorption ionization coupled with mass spectrometry imaging with
direct stamping onto a silica gel (60 Å) plate for thin layer
chromatography (Merck, Germany), as described previously [22].
The metabolic fingerprint of free fatty acids was performed using a
MALDI-LTQ-XL instrument with a tissue-imaging feature (Thermo
Fisher, San José, CA, USA). Data acquisition for the survey scan was
Fig. 3. GPR120 expression in liver ofmice after treatments. Twenty-four hours following the last
of Swiss mice fed on regular chow (CT), high-fat (HF), HF plus exercise training (HF + Exe
(HF + Exe + FS) were used in immunoblotting and immunoprecipitation experiments to eval
identify the protein target (A, B, C, D and E), with A1, B1, C1, D1 and E1 representing a quanti
protein was immunoprecipitated with GPR120. The nitrocellulose membrane was immunoblo
anesthetized 24 h after their last exercise session and acutely treated through portal vein with
obtained and used in immunoblotting experiments, blotted with phospho-Akt (F and G) or p
GAPDH (A, B, C, D, F and F1), Akt total (F andG) andGSK-3β total (F1 andH). Ponceau stainingw
The glycogen content in liver of animals in all groupswas analyzed at the end of experimental pe
gel was not cut. Values are expressed as mean± S.D. CT (n=6), HF (n=7), HF + FS (n=8), HF
vs. CT (+); ⁎CT (+) vs.HF (+);#CT vs.HF;#HF vs.HF + Exe, HF + FS and HF + Exe + FS group
HF, high-fat diet; FS, flaxseed oil; Exe, exercise training; kDa, kilodalton.
performed at the m/z range of 150–600 in the negative ion mode. No
matrix was applied.
2.12. Gas chromatography for the evaluation of FS oil composition

FS was chosen as the source of ω3. To test the quality of the FS oil
and to certify the presence of theω3α-linolenic fatty acid, themethyl
esters were separated by a DB-23 capillary column in a gas
chromatograph (GC-6850 Series Gas Chromatography System, Agilent
Technologies, Santa Clara, CA, USA) [23].
2.13. Statistical analysis

All results were first submitted to the Kolmogorov–Smirnov test to
check for normality. A Student's t test was applied for the comparison
of CT andHF groups.Whenappropriated, analysis of variancewas used
to compare three or more groups. Mean values ± S.D. were compared
using Tukey's test. Pb.05 was accepted as statistically significant in
all cases.
3. Results

3.1. GPR120 expression after acute physical exercise in the liver of leanmice

Acute physical exercise significantly increased Gpr120 gene
expression in the liver at both 24 and 48 h post exercise compared
to sedentary controls (CT) (Fig. S1B and C). The 24-h postexercise time
point was therefore selected for liver extraction in subsequent
experiments.
3.2. Acute exercise, but not FS oil, improves insulin signaling

We carried out a time-course test to understand how long it takes
for ω3 to reach the blood stream (Fig. S2C) and activate the GPR120
receptor in the liver of mice (Fig. S2A). Based on these results, 500 μl
of FS oil was administered by gavage 21 h after an acute exercise
session. Two and a half hours after FS oil administration, glucose was
injected i.p. (glucose 25%, 2 g/kg), and 30 min later, the liver
fragment was removed (totaling 24 h postexercise time point) (see
experimental design, Fig. S2B). Exercise alone (Exe) did not acutely
change GPR120 protein levels but did increase Akt (3.45-fold) and
GSK3 (4.9-fold) protein levels compared to controls (CT) (Fig. S2D).
An injection of glucose following exercise (Exe + Gluc) further
increased Akt phosphorylation (2.09-fold) compared to exercise
alone (Exe) (Fig. S2E), but the administration of FS oil with or
without glucose (Exe + FS or Exe + FS + Gluc) did not change
GPR120 protein levels or Akt and GSK3 phosphorylation (Fig. S2F
and G). Liver glycogen content was unaffected by any treatment
(Fig. S2H).
exercise session and 12 h following the last FS oil treatment, extracts obtained from liver
), HF plus FS oil (100 μL) (HF + FS) or HF plus exercise training plus FS oil (100 μL)
uate GPR120 protein content or activity. A specific antibody against GPR120 was used to
tative representation of these blots. To test GPR120 intracellular signaling, β-arrestin 2
tted against GPR120 antibody (E and E1). To test insulin signal transduction, mice were
saline (100 μl) (−) or insulin (100 μl 10−6 mol/L) (+). After 30 min, fragments were

hospho GSK-3β (F and F1). Loading was evaluated by reprobing the membranes with
as adopted to improve and guarantee the quality ofWestern blotmembrane running. (I)
riod (n=7 for each group). TheWestern blot image bands displayed are original, and the
+ Exe (n=7) and HF + Exe + FS (n=8). Mean significant difference between#CT (−)
s by Student's t test (Pb.05). GPR120, G protein-coupled receptor 120; CT, regular chow;
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3.3. Exercise training improves insulin sensitivity and reduces body fat in
obese and insulin resistant mice

Prior to initiating the chronic exercise, obesity, insulin resistance
and glucose intolerance were induced by HF diet (Fig. S3A–F). Neither
HF + Exe nor HF + FS oil treatment altered food intake compared to
those on the HF diet alone (Fig.1B). The HF groupmaintained a higher
weight than CT throughout the experimental period (Fig. 1C and D),
and although there were no significant differences in body weight
among the treated groups, at the end of experimental period, mice
subjected to HF + Exe + FS treatment did have a lower body weight
than HF alone (Fig. 1E). Fasting blood glucose levels were reduced in
both HF + Exe and HF + Exe + FS groups, 18.61% and 21.2%,
respectively (Fig. 1F), and the constant of glucose decay (KITT)
improved 211.4% and 146%, respectively, compared to HF alone
(Fig. 1G and H). KITT sensitivity was also around 110% higher in the
HF + FS group compared to the HF group, but this did not reach
significance (Fig. 1G and H). An HF diet led to a yellowish,
hypertrophic liver with alterations in the macroscopic appearance.
This was reverted to a normal condition on both the HF + Exe and
HF + Exe + FS groups (Fig. 2A andB),with exercise, but notHF + FS,
responsible for these changes. Both HF + Exe and HF + Exe + FS
groups avoided fat accumulation in adipose tissue depots (epididymal,
mesenteric and retroperitoneal) compared to HF alone (Fig. 2C).

3.4. HF diet, exercise training and treatment with ω3 from FS oil increase
GPR120 levels in obese mice

Mice in theHF group showed a significant increase (59%) in hepatic
GPR120 protein content compared to CT (Fig. 3A and A1), levels which
were further increased by both exercise (HF + Exe) and FS oil
(HF + FS) (196.73% and 112.9%, respectively) (Fig. 3B, B1, C and C1).
However, the combination of both exercise and FS oil (HF + Exe +
FS) failed to significantly increase GPR120 levels from the HF group
(Fig. 3D and D1). Exposure to an HF diet, FS oil supplementation, or
exercise training did not alter hepatic GPR40 levels (Fig. S4A–D).

3.5. Synergy between exercise training and ω3 from FS oil activates the
GPR120 receptor and its intracellular cascade in obese mice

As presented above (3.4), both HF + Exe and HF + FS were
capable of increasing GPR120 gene expression and protein levels, but
we also wanted to assess GPR120 intracellular signaling to see
whether the maximal benefits of ω3 were being obtained by this
pathway by immunoprecipitating GPR120 with its first downstream
protein βarrestin2. Both HF + Exe and HF + FS were capable of
increasing the immunoprecipitation of GPR120 and βarrestin2;
however, only HF + Exe + FS synergy increased with significance
(Pb.05) compared to HF alone (Fig. 3E, E1).

3.6. The effects of exercise training and ω3 from FS oil on insulin
signaling

An HF diet alone was able to induce insulin resistance in the liver,
with levels of Akt and GSK3 phosphorylation 528% and 182.6% lower
than CT, respectively (Fig. 3F, F1 and F2). The HF + FS group showed
an increased level of Akt phosphorylation (456.7%) from the HF group,
Fig. 4. The effect of chronic Exercise and FS oil on inflammation. Extracts obtained from liver of S
plus exercise training (HF + Exe) orHF plus exercise training plus FS oil (100 μl) (HF + Exe +
Specific antibodies against tumor necrosis factor alpha (TNF-α) (A), phospho c-Jun N-terminal
(C), phosphorylated NF-κB inhibitor alpha (IκBα) (D), interleukin 1 beta (IL1β) (E) and interle
reprobingmembraneswithGAPDH (A, B, C, D, E and F). Ponceau stainingwas adopted to improv
bands used are original, and the gelwas not cut. Values aremean±S.D. CT (n=6), HF (n=7), HF
and ⁎Pb.05 vs. HF, HF + FS, HF + Exe and HF + Exe + FS (Tukey's test). CT, regular chow; H
but this did not reach significance (P=.055) (Fig. 3G and G1x).
Likewise, there were no significant changes in Akt or GSK3
phosphorylation (Fig. 3G–H1) or glycogen hepatic content (Fig. 3I)
among treatments compared to HF group alone.
3.7. Exercise training, FS oil or their combination reduces diet-induced
inflammation

Mice on an HF diet showed an increase in the number of hepatic
inflammatory markers compared to those on a chow diet (CT group)
(Fig. 4A–F). The HF+ FS reduced TNFα protein levels and JNK
phosphorylation (Fig. 4A and B), and the HF + Exe led to a decrease
in TNFα and IL1β protein levels, and JNK and IκBα phosphorylation
(Fig. 4A–E) (Pb.05). The combination of HF + Exe + FS led to a
decrease in TNFα and IL1β levels and JNK phosphorylation compared
to HF alone (Fig. 4A, B and E) (Pb.05).
3.8. FS oil improves the physical performance of mice

Before the beginning of the exercise training, in order to
individualize the training workload for each mouse in their groups,
the maximum potency (Pmax), distance ran and time spent on
treadmill were assessed (Fig. 5). At the end of training, 4 weeks later, a
13.5% increase in running distance and an 11.5% increase in running
speed were observed compared to before training, indicating an
overall improvement in their performance (maximum potency),
although their time to exhaustion did not increase (Fig. 5B and C).
The HF + Exe + FS group significantly improved in all parameters
across the training period, with increases in distance ran (26.9%),
potency (12.5%) and, contrary to the HF + Exe group, running time
(12.1%) (Fig. 5A–C). A direct comparison in the running parameters
after training between the HF + Exe and HF + Exe + FS groups
suggested that animals treated with HF + FS had a greater overall
performance, with an increased time to fatigue and increased distance
ran, and markedly, they ran at a higher intensity (Fig. 5D).
4. Discussion

Low-grade inflammation is considered one of the most relevant
mechanisms of obesity and relateddisturbances. It iswell documented
that both ω3 supplementation and physical exercise have anti-
inflammatory properties in obesity as well as in improving the action
of insulin [24,25]. In this context, we focused on the association between
dietaryω3 and exercise in obesity and show for thefirst time that chronic
exercise and ω3 have a synergistic effect on the hepatic levels and anti-
inflammatory signaling of the recently deorphanized GPR120, and
improve metabolic and molecular parameters in obese mice.

In the present study, we initially assessed whether acute physical
exercise in lean mice could modulate the expression of hepatic
GPR120 and GPR40 but showed no changes in either receptor at the
gene or protein level (data not shown). This is in agreement with a
recent study where GPR120 was shown not to be involved in the
regulation of energymetabolism in leanmice during an acute physical
exercise session on a treadmill [26]. Additionally, Nishinaka et al. [27]
were also unable to alter GPR40 expression with acute exercise in the
hippocampus of depressed mice.
wiss mice fed on regular chow (CT), high-fat (HF), HF plus FS oil (100 μl) (HF + FS), HF
FS)were used in immunoblotting experiments to evaluate protein expression or activity.
kinase (JNK) (B), phosphorylated transforming growth factor activated kinase 1 (TAK1)
ukin 10 (IL10) were used to assess respective protein levels. Loading was evaluated by
e and guarantee the quality ofWestern blotmembrane running. TheWestern blot image
+ FS (n=8), HF + Exe (n=7) andHF + Exe + FS (n=8).#Pb.05 vs. CT (Student's test)
F, high-fat diet; FS, flaxseed oil; Exe, exercise training; kDa, kilodalton.
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Next, we assessed the hepatic GPR120 andGPR40 levels in the liver
of obese mice after 4 weeks of exercise training and a FS oil
intervention. Of notewas that the HF diet per se significantly increased
the level of GPR120 compared to lean control (CT), which has
previously been observed [28–31], and levelswere also increased both
by chronic exercise and FS oil treatment. The mechanisms by which
physical exercise modulates GPR120 expression have not been
investigated. However, the GPR120 modulation induced by HF was
recently indicated by Chen et al. [32], in which they observed that
Gpr120 gene expression is under the control of the transcription factor
Cebpβ. They verified an increase in Cebpβ gene expressionwith an HF
diet, which could therefore serve as a potential candidate behind
GPR120 up-regulation in our study. The observed increase in GPR120
with FS oil is also in agreement with previous studies, with ω3-
supplemented diets shown to elevate GPR120 expression in animals
[33] and in children diagnosed with NAFLD [34]. Here, mice subjected to
the exercise training plus the FS oil treatment did not present any further
increases in GPR120 compared to HF + Exe, HF + FS or HF alone.

GPR40 levels were not changed by any treatment. GPR40 has the
same agonists as GPR120 but only a 10% homology [35] despite using
the same intracellular signaling cascades [7]. Previous data on the
ability of exercise to modulate G protein coupled receptors in general
are scarce. The long-chain fatty acids such as ω3 and ω9 are well-
recognized GPR40 agonists [5]. Once activated, GPR40 could contrib-
ute against proinflammatory signaling in several tissues, increasing
the insulin sensitivity and hence glucose uptake [4].

We also evaluated the effect of exercise training and FS oil on
insulin action and glucose homeostasis, with both exercise alone and
exercise with FS oil improving levels similar to those observed in lean
controls. This is in line with previous studies that have shown that
both acute physical exercise and chronic physical exercise are able to
improve insulin action in obesemice [3,24,36].Wedid not observe any
effect of FS oil alone on insulin action. This is in linewith a studywhere
FS oil supplementation did not affect glucose control in individuals
with well-controlled type 2 diabetes [37]. Surprisingly, physical
training, FS oil or their combination did not have a significant effect
Fig. 5. Incremental exercise testing after chronic exercise and FS oil treatment. Mice
were submitted to a previously described protocol of incremental exercise testing with
and without FS oil, and their final performances were compared both within groups
(compared to their initial performance) and between groups for (A) running time, (B)
distance and (C) maximum potency. #Pb.05 vs. Exe or FS (Student's test).
on Akt or GSK3 activity, as some studies have shown [38,39]. We
attributed our negative findings here to high variance in the group
given the observed improvements in insulin sensitivity and glucose
levels.

Overall, the role of FS oil in insulin signaling needs to be further
investigated, with, notably, attention paid to the standardization of
dose. For example, in the abovementioned where diabetic patients
received FS oil, 13 g of the oil, totaling 7.4 g of alpha-linolenic fatty acid,
was administered per day [37]. This is considered a very high dose, and
this excess could be harmful, with our group previously showing that
high levels FS oil in rodent diets (achievable only through supple-
mentation) worsened several metabolic and molecular parameters,
triggering a proinflammatory signaling [7]. Animal studies have also
been inconsistent in FS oil dosage, with, for example, Bashir et al. [40]
treating obese and diabetic mice with FS oil at 4 mg/kg, while Zhao et
al. [41] used a diet containing 10% of FS oil to treat mice. This latter
value corresponds to approximately 500 mg/day [41], and in our
dosage studies, we determined the maximal safe dose to be at around
290 mg/day, which was easily achievable by diet alone. In our current
study, we used 50mg/day, whichmight not have been high enough to
change themain pathophysiological parameters of obesemice despite
the observed reduction of some proinflammatory proteins and the
increase in GPR120 receptor levels in the liver of treated animals.
Beyond dosing concerns, oil quality and the percentage of alpha-
linolenic fatty acid in the oil can also cause difficulties to be reached.
Generally, the percentage of ω3 in FS oil is around 58% [42], with a
value of 52% obtained in this study, although levels as low as 33% have
been used in other studies [43]. We therefore recommend that dose/
response experiments to establish aminimal acceptable percentage of
alpha-linolenic fatty acid in FS oil are necessary.

In our current study, we also investigated a number of inflamma-
tory markers after the exercise training and FS oil interventions. As
expected from the literature, both treatments presented a consistent
reduction in inflammatory markers. Exercise is well described as one
of the most important nonpharmacological anti-inflammatory strat-
egies, shown to reduce TNFα, IL1β, IL6, IκK and IκBα, among others
[3,44–46]. ω3 fatty acids induce the same pattern but through
different mechanisms. As mentioned, an interesting research showed
a coupling between GPR120 receptor and βarrestin2, an intracellular
protein that disrupts the inflammatory signal transduced from TLR2/4
and TNF-α receptors [5]. Docosahexaenoic (DHA) and eicosapetaenoic
(EPA) acid, and with a lower affinity alpha-linolenic (ALA) acid,
activate this receptor andmediate the anti-inflammatory signaling [5],
with the same molecular cascade observed across multiple body
tissues [4,7]. The association between exercise and FS oil reduced the
proinflammatory markers, however without further improvement to
the anti-inflammatory response, probably through the samepathways
above described.

We also investigated fat depots in mesenteric and retroperitoneal
adipose tissues as well as in the liver and verified a reduction in lipid
droplets following exercise or exercise and FS oil treatments in the
liver from obese mice. Potential molecular candidates in the
modulation of adipose tissue by exercise include irisin, which is
secreted upon muscle contraction and can change the profile of
adipose tissues among other functions [47]. However, a reduced
adipose tissuemass in either humans or animals after chronic exercise
exposure is mainly attributed to the increase energy expenditure [48].
FS oil treatment did not lead to a reduced fat mass profile in our study,
although this has previously been observed elsewhere with other
studies demonstrating a reduction in fat storage and the number and
size of adipocytes [4,7,43]. Here,we believe that the period of treatment
(4 weeks) and our mild dose of FS oil were perhaps insufficient to
change the fat depots in either liver or adipose tissue, and an
extended treatment period as suggested by Baranowski et al. [43]
might be required.
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In our final experiment, we unexpectedly demonstrated that
animals treated with FS oil had an increased performance in the
incremental load test. Previous studies have been somewhat incon-
sistent in showing a beneficial effect of ω3 in this area, with no
improvement observed in maximal aerobic power, anaerobic thresh-
old or running performance in well-trained soccer players supple-
mented for 10 weeks with 2.64 g of ω3 (1.6 g of EPA plus 1.04 g DHA)
[49]. However, improvements in neuromuscular function, maximal
voluntary isometric contractions, performance and fatigue levelswere
observed elsewhere in athletes after supplementationwith 1.1 g ofω3
(375 mg EPA, 230 mg docosapentaenoic acid, 510 mg DHA) [50]. The
translation of the current supplementation model to the human
application is reasonable, once the ω3 (ALA) adequate intake is 1.6 g/
day [51], which could be achievable with 3 mL of FS oil or 7 g of
flaxseed.

Overall, although we do not demonstrate the ability of a FS oil
supplement to revert obesity or insulin sensitivity beyond that of
chronic exercise, we hypothesize that a longer treatment time at our
low dosemight allow these affects to come about, and future research
directions could lead towards these modifications. Next explorations
could determine how chronic exercise increases the GPR120 gene
expression and protein content in the liver or different tissues.

In summary, our results show that acute physical exercise is not
involved in themodulation of GPR120 or GRP40 expression in the liver
of lean mice. On the contrary, we show for the first time that chronic
exercise increased levels of GPR120, althoughnotGPR40, in the liver of
obese mice, as did an FS oil supplement. The insulin signaling was not
ameliorated by interventions; however, the inflammatory tonus in the
liver was improved. FS oil contributed to increase the performance of
running mice, improving the aerobic power. These associated factors,
for a longer time, could contribute as a new strategy against
inflammation disorders associated to obesity, providing new insights
in the study of GPR120.
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